CHAPITRE 4

Potentiels thermodynamiques

4.1 Compression adiabatique

Yorokk  Un gaz est caractérisé par son enthalpie H (S,p) = C, T, ou C,
est une constante appelée chaleur spécifique, et par pV = NRT, ou p est sa
pression, V' son volume, T' sa température et N le nombre de moles de gaz. Une
compression adiabatique réversible accroit la pression de p; a ps ou ps > p1.
La température initiale est T7. Déterminer la température 75 a la fin de la
compression.

Solution

Pour un processus adiabatique réversible ’entropie S est constante, i.e. dS = 0.
Ainsi, la différentielle de I'enthalpie s’écrit,

dH = Cp,dT =TdS+Vdp=Vdp
Compte tenu de la relation pV = NRT, on en déduit que,
ar 1V dp — NR dp

T 07]) TP Cp p
L’intégration de cette relation de ’état initial (T7,p1) & V’état final (Ts, p2)

s’écrit,
T3 NR D2
In({—=)=—1Imn|=—=
T Op D1

L’exponentiation de cette équation donne la température a la fin de la com-

pression,
NR

Cp
T2 - Tl (}92>
b1

4.2 Transfert irréversible de chaleur

Y¥odok Un cylindre fermé par un piston contient N moles de gaz diatomique
caractérisé par U = (5/2) NRT et par pV = NRT, comme en exercice 4.1. Le
gaz a une température initiale T; lorsqu’il est mis en contact avec un réservoir
de travail & pression pexs = p et a température Tyt = T, ce qui provoque un
transfert irréversible de chaleur. Déterminer la quantité de chaleur échangée.
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Application numérique

N =0.5mol, T; = 300K and Ty = 450K.

Solution

L’enthalpie du gaz s’écrit,
5 7
H:U+pV:§NRT+NRT: iNRT

D’apres la relation (4.61), la chaleur échangée est,

7
Qif = AH;f = 5NR(Tf — T;) = 2.18kJ.

4.3 Energie interne comme fonction de 7" et de V'

Yevohek Etablir D'expression de la différentielle de I’énergie interne
dU (S (T,V) ,V) comme fonction de la température 7" et du volume V. Dans
le cas particulier ou le gaz satisfait la relation pV = NRT, montrer que
au (S (T,V) ,V) est proportionnel & dT'.

Solution
D’apres la définition mathématique (4.80), la différentielle dU (S (1,V), V) est

exprimée comme,

oU(S(TV),V) a5 (r,v)

05 (T, V) o |7

dU(S (T, V),V) =

U(S(TV),V) gg(r.vy U(SIT.V),V)
+ 95 (S,V) ov * av v

A Taide des définitions (2.9), (2.10), (4.81) et de la relation de Maxwell (4.75),
on obtient,
U

dU(S(T,V),V) = 5%

T + <TW p(T,V)) av
14

oT

Dans le cas particulier d'un gaz qui satisfait la relation pV = NRT, les termes
entre parentheses s’annulent et la différentielle se réduit a,

ou

dU (S (T,V), V)
Vv

qui est en effet proportionnel a dT'.
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4.4 Enthalpie comme fonction de 7" et de p

Yook Etablir Uexpression de la différentielle de ’enthalpie dH (S (T,p), p)
comme fonction de la température T et de la pression p. Dans le cas particulier
ou le gaz satisfait la relation pV = NRT, montrer que dH (S’ (T,p) ,p) est

proportionnel a dT'.

Solution
D’apres la définition mathématique (4.80), la différentielle dH (S (T,p), p> est

exprimée comme,

OH (S (T.p).») 95 (T, p)

T
oS (T,p) oT d

dH(S (T,p) ,p) =

8H(S (T, p) ,p) 05 (T.p) , 3H(S (Z.p) ’p)

T\ s op op

dp

A Taide des définitions (4.33), (4.34), (4.81) et de la relation de Maxwell (4.79),
on obtient,

OH oV (T,
dH(S(T,p).p) = 5| dT+ <T8(TP)+V(T,p)) dp
p

Dans le cas particulier d'un gaz qui satisfait la relation pV = NRT, les termes
entre parentheses s’annulent et la différentielle se réduit a,

dH(S(T,p),p) - Z—;I AT
p

qui est en effet proportionnel a dT'.

4.5 Grand potentiel

Yo'okk Le grand potentiel ® (T,V,{ua}), aussi appelé énergie libre
de Landau, est un potentiel thermodynamique obtenu par transformations
de Legendre de I’énergie interne U (S, V,{N4}). Utiliser les transformations
de Legendre pour exprimer le potentiel thermodynamique ® (T,V,{ua}) en
termes du potentiel thermodynamique F. Déterminer aussi la différentielle
d® (T, V,{pa}).
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Solution

Afin d’obtenir le grand potentiel @ (T',V, {u4}), on effectue des transformations
de Legendre sur Iénergie interne U (S, V, {N4}) par rapport & 'entropie S et au
nombre de moles N4 de chaque substance A. Compte tenu des définitions (2.9)
et (2.11),

oUu ou
O=U—- —5- — N, =U-TS - N

Compte tenu des expression (4.22) et(4.23) de I’énergie libre,

O=F-> paNa=-pV
A

En prenant la différentielle du grand potentiel ® (T, V,{u4}), on obtient,

d® =dU — TdS — SdT — Y padNa— > Nadpa
A A

Compte tenu de la différentielle de la relation de Gibbs (4.1), la différentielle
du grand potentiel ® (T,V,{pa}) s'écrit,

d® = —SdT — pdV — Y Nadpa
A

4.6 Rayonnement du corps noir

Yook Un corps noir désigne un objet en I’équilibre thermique avec I’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,

3/ 3¢\"3 -
U(S, V)= 1 (160) S4/3y—1/3

ou o est la constante de Stefan-Boltzmann.

1) Déterminer 1’énergie libre F (T, V) du rayonnement.

2) Montrer que Iénergie interne U (S, V') du rayonnement peut étre obtenue en
opérant une transformation de Legendre inverse de 1'énergie libre F' (T, V).

3) Trouver les expressions p (T, V) et p (S, V) de la pression du rayonnement.

Solution

1) La température (2.9) du rayonnement du corps noir est définie comme,

U (S,V 3¢\ /3 _
r(s.v)= LN () sy
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En inversant cette relation, on obtient I'entropie du rayonnement S (T, V)
en fonction de la température T et du volume V,

160
S(T,V)=|(——|T*V
v = ()
En substituant cette équation dans l’expression de 1’énergie interne du
rayonnement U (S, V) on trouve,

_40
T oc

U TV

L’énergie libre F (T, V) est obtenue par transformation de Legendre (4.22)
de V’énergie interne U (S, V) par rapport & entropie S. A laide des deux
équations précédentes cette transformation s’écrit explicitement,

F(T,V)=U — TS:fé—ZT“V

L’entropie (4.26) du rayonnement du corps noir est définie comme,
oF (T,V) 160
aT - 3¢

En inversant cette relation, on obtient la température du rayonnement
T (S,V) en fonction de l'entropie S et du volume V,

S(T,V) = Vv

3¢ \/?
T(S,V):<160> SLBy—1/8

En substituant cette équation dans l’expression de 1’énergie libre du rayon-
nement F' (T, V) on trouve,

1/ 3¢ /3
Fe_>[(2% 4/3v,—1/3
4 <160> STV

L’énergie interne U (S,V) est obtenue par transformation de Le-
gendre (4.22) de ’énergie libre F' (T, V') par rapport a la température T'. A
I’aide des deux équations précédentes cette transformation s’écrit explici-
tement,
1/3
3 ( 3c
U, V)=F+ST="(-—"=) s¥3y-1/3
(S, V)=F+ 1 (160)

A Taide de la définition (2.10), la pression de radiation du corps noir p (S, V')
s’exprime en fonction de S et V' comme,

oU (S,V) _ 1 (3¢ \'"* Lisr s
PV ===y — =1 (160) SV
A Daide de la définition (4.27), la pression de radiation du corps noir p (T, V)
s’exprime en fonction de 7" et V' comme,
COF(IV) 4o,

T.V) = ——
p(T,V) oY% o
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4.7 Fonctions de Massieu

Yrodk On considere les deux fonctions de Massieu suivantes :

1)J<;J4N>

L p
2)Y(=,=,N
) (T’ T7 )
Les fonctions de Massieu sont obtenues par transformations de Legendre de

la fonction d’état entropie S (U, V, N) par rapport au variables d’état U et V.
Utiliser les transformations de Legendre pour exprimer les fonctions de Massieu

1 1

J <T’ V, N) et Y (T’ %, N> en termes des potentiels thermodynamiques F'
1 1

et G. Déterminer aussi les différentielles dJ (T’ V, N) et dY (T’ %, N).

Solution

L’entropie S (U, V, N) comme fonction d’état s’écrit,

1 p I
S=—U+=V-LN
7o T T

et sa différentielle s’écrit,

_ 1 P H
dS = —dU + dV — - dN
Alinsi,
os 1, 95 _»
au- T & v T

Afin d’obtenir la fonction de Massieu J (;, V,N ), on effectue une transfor-

mation de Legendre de Uentropie S (U, V, N) par rapport & 1’énergie interne
U,

oS U F
T=S-pV=5"7="7
1
De maniére similaire, pour obtenir la fonction de Massieu Y’ T %, N )7 aussi

appelée la fonction de Planck, on effectue deux transformations de Legendre
de lentropie S (U, V, N) par rapport & l’énergie interne U et au volume V,

1
La différentielle de la fonction de Massieu J < 7 V,N ) s’écrit,

_ 1 1y 1 p I
dJ =dS TdU Ud(T) = Ud(T)—i—TdV TdN
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De maniére similaire, la différentielle de la fonction de Massieu Y (T’

\."B
=
SN—

s’écrit,
as— rav—vdl NP av_va(P) - _ N va(\_
dY = dS— U Ud<T> Pav Vd(T)_ Ud(T) Vd(T) Lan
4.8 Equations de Gibbs-Helmoltz
PAAoke” ¢

1) Montrer que

U(S,V) = _T2% <F(§V>>

ou T =T(S,V) est considéré comme une fonction de S et V.

H(S,p) = -T2 (G(TP)>

2) Montrer que

oT T

ouT =T (S,p) est considéré comme une fonction de S et p.

Solution

1) L’énergie interne U est liée a ’énergie libre F' et exprimée en termes des
variables d’état S et V' comme,

U(S,V):F(T(S,V),V) +T(S,V)S

A Taide de la définition (4.26) et de la regle de la dérivée d’un produit de
fonctions, elle peut étre mise sous la forme,

aF(T (S, V) ,v)
aT

U(S,V) = F(T(S,V),V) —T(S,V)

, 0 (F(T(S.V).V)

=TSV a7 T

2) De maniére similaire, I’enthalpie H est liée a ’énergie libre de Gibbs G et
exprimée en termes des variables d’état S et p comme,

H(S,p) = G(T(S,p) 7p) +T(S,p) S

A Taide de la définition (4.40) et de la régle de la dérivée d’un produit de
fonctions, elle peut étre mise sous la forme,

H (S,p) =G(T(s,p)7p) _ T(S’p)aG(T((;maP)

oT T
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4.9 Pression dans une bulle de savon

vk Une bulle de savon est un systéme constitué de deux sous-systemes.
Le sous-systéme () est un film liquide mince et le sous-systeme (g) est le gaz
enfermé a l'intérieur du film. L’air extérieur peut étre considéré comme un
réservoir de chaleur. L’équilibre est caractérisé par le minimum de 1’énergie
libre F' du systéme. La différentielle de 1’énergie libre dF s’écrit,

dF = — (Sg+ S¢)dT +2vdA— (p— po)dV

ol A est l'aire du film de savon et V est le volume de la bulle. Le parameétre -y
est appelé la tension superficielle. 11 caractérise les interactions a 'interface
entre le liquide et le gaz. Comme le film de savon a une interface intérieure et
une interface extérieure, il y a un facteur 2 devant le parametre . La tension
superficielle v est une variable intensive qui joue un réle analogue pour un
systeme surfacique a la pression pour un systeme volumique. Toutefois, la force
due a la pression du gaz est exercée vers 'extérieur alors que la force due a la
tension superficielle est exercée vers l'intérieur. Par conséquent, les signes de
deux termes correspondants dans ’expression de dF' sont opposés. Le terme
p— po est la différence de pression entre la pression p a 'intérieur de la bulle et
la pression atmosphérique py. Considérer la bulle comme une sphere de rayon
r et montrer que,

Solution

Comme lair autour de la goutte est un bain thermique, la température est
constant, i.e. dI" = 0. Pour une bulle sphérique, la différentielle de 'aire latérale
s’écrit,

dA = A (r 4 dr)® — 4w r? = 4x (2rdr + dr®) ~ 8mrdr

ol on néglige le terme du deuxiéme ordre en dr2. La différentielle du volume
est donnée par,

4 ar 4 4 :
dV = = (r+dr)® = <20 = 5 (3r%dr 4 3rdr? + dr®) ~ drrdr

ol on néglige le terme du deuxieme ordre en dr? et le terme du troisieme ordre
en dr3. A 1’équilibre, ’énergie libre F est minimale. Ainsi,

dF = 167y rdr — 47 (p — po) r’dr = 0
ce qui implique que la différence de pression est donnée par,

4~
P—Po=—
T
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by

Py

- - - = p = p,+ pgh

Fig. 4.1 Principe de fonctionnement d’un dispositif qui pourrait étre utilisé pour estimer
I'influence de la tension superficielle sur la pression a l'intérieur d’une goutte d’eau. Le réci-
pient est suffisamment grand pour que lorsque la goutte se forme la variation de hauteur du
liquide soit négligeable. Le systéme est en contact thermique I’atmospheére qui est considérée
comme un réservoir de chaleur & température constante 7T'.

4.10 Pression dans une goutte

Yefodok Déterminer la pression hydrostatique p & lintérieur d’'une goutte
comme fonction de son rayon r (fig. 4.1). On suppose que la goutte (g) se
forme a 'extrémité inférieure d’un tube fin fixé au bas d’un cylindre vertical
contenant le liquide (¢). Lorsque la goutte se forme & l'extrémité du tube, la
variation de la hauteur de 'eau dans le récipient cylindrique est négligeable. Si
la hauteur du liquide au-dessus de I'extrémité inférieure du tube est h, alors
la pression hydrostatique est p = py + pgh, ou p est la masse volumique du
liquide, et g est l'intensité du champ gravitationnel a la surface de la terre.
Pour ce liquide, la différentielle de 1’énergie libre s’écrit,

dF = — (S8, + S4)dT +~vdA — (p— po)dV
Montrer que,
_ 20 _
p— po=— =pgh
r
Solution

La différence de pression p — pg est obtenue en effectuant le méme calcul que
pour la bulle de savon (sect. 4.9), en utilisant la tension superficielle v au lieu
de 2+.

4.11 Chaleur de détente surfacique isotherme

Yvodk Un systéme est constitué d’un mince film d’aire A, d’énergie interne
U (S, A), ou
dU =TdS +~dA
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Ainsi, la tension superficielle s’écrit,

aU (S, A)

Exprimer la chaleur @;¢ fournie au film pour une variation AA;y = Ay — A, de
sa surface a 1’aide d’un processus isotherme a température 7', d’un état initial ¢
a un état final f, en termes de sa tension superficielle v (T, A) et de ses dérivées
partielles.

Solution

On effectue une transformation de Legendre de Iénergie interne U (S, A) par
rapport a ’entropie S pour définir ’énergie libre et déterminer sa différentielle,

dF (T,A) =-S5 (T,A)dT +~(T,A)dA
ou
OF(T, A) B OF (T, A)
0A orT

Pour un processus isotherme, on peut déterminer la chaleur ;¢ fournie au film
comme,

v (T,A) = et S(T,A) =

oS (T, A)
0A
Le théoreme de Schwarz appliqué a I’énergie libre F' (T, A) s’écrit,

0 (oF\ _ 0 (OF
oA \oT )~ oT \ 94

ce qui donne la relation de Maxwell,

Qif =TAS;;=T AAis

05 (T,A)  9v(T,4)

0A oT

Ainsi, la chaleur fournie au film s’écrit,

oy (T, A)

Qif =-T o7

AA;y

4.12 Propriétés thermomécaniques d’une barre élastique

Yok L’état d’une barre élastique est décrit par les variables d’état entropie
S et longueur L. La différentielle de I’énergie interne U (S, L) de la barre s'écrit,

_U(S,L) 4o, OU(S.L)

w 0S8 oL

dL =T (S,L)dS + f (S,L)dL

On note que f(S,L) a la dimension d’une force. La contrainte longitudinale

T exercée sur la barre est 7 = -, ou A est 'aire de la section de la barre.

A
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On néglige toute variation de A due a f. Les propriétés physiques du matériau
de la barre sont données par le coefficient de dilatation thermique linéaire a
contrainte fixée,

1oL )
LD ar
et le module de Young isotherme,
L Lofmr)
A OL

Utiliser ces deux propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes :

1) Déterminer la dérivée partielle de la contrainte exercée sur la barre 7 par
rapport a la température lorsque sa longueur est fixée. Considérer que la
section d’aire A est indépendante de la température.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur de la barre AL;y d’un état initial ¢ & un état final f en termes de ap,
et I.

3) Déterminer la dérivée partielle de la température T de la barre par rapport
a sa longueur L dans un processus adiabatique réversible.

Solution

1) En appliquant l'identité cyclique de dérivées partielles (4.85) a la force
f (T, L), on obtient,

of oT oL _ _
oT OL of
et ainsi,
of  OL of
ar ~ “aror LA

Comme la section A est indépendante de la température, la contrainte
longitudinale dans la barre varie avec la température comme,

or
ﬁ—*@LE

2) A température constante T, le transfert infinitésimal de chaleur s’écrit,

aS
6Q =TdS (T.L) =T 57 dL

La différentielle de 1’énergie libre s’écrit,
dF = —-S(T,L)dT + f(T,L)dL

Le théoréme de Schwarz appliqué & Iénergie libre F' (T, L) s’écrit,

9 (oF\ _ 0 (OF
oL \oTr ) aTr \ oL
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ce qui donne la relation de Maxwell,

_OS8(T,.L) _of(T.L) _
9L = 5T = —ar AFE = cste

Ainsi, apres intégration du transfert de chaleur infinitésimal 6Q) a tem-
préature T' constante, on obtient le transfert de chaleur pour un processus
isotherme d’un état initial 4 & un état final f,

0S
if =T — AL,
Qif =T 57 ALy
A Taide de la relation de Maxwell et de l'identité cyclique de dérivées
partielles (4.85), le transfert de chaleur peut étre mis sous la forme,

of
Tar

ALif = Tai ﬁALZJI = OéLTAEALif

Qi =~ aT 9L

3) Pour un processus adiabatique réversible, on doit déterminer la dérivée de la
longueur L (S, T) par rapport a la température lorsque lentropie est main-
tenue constante. A 'aide de l'identité cyclique de dérivées partielles (4.85),
on obtient,

oT 9T 98

OL ~  9S oL

Lorsqu’on identifie les deux expressions du transfert de chaleur @Q;; obte-
nues au point 2), on trouve,

oS
87[, =y, AF
Ainsi,
8T ay, AFE
- = T U — _—
oL Cr ou  Ci aT

est la chaleur spécifique a longueur constante.

4.13 Sous-systemes simples dans un bain thermique

Yook On considere un systeme fermé et rigide contenant un gaz homogene.
Le systeme est divisé en deux sous-systemes simples séparés par une paroi
mobile, imperméable et diatherme. Le systeme est a I’équilibre thermique avec
un bain thermique & température T' = cste (fig. 4.2). L’énergie cinétique et
I’énergie interne de la paroi sont négligeables.

1) Exprimer la différentielle de ’énergie libre dF' en fonction du taux de pro-
duction d’entropie Ilg.

2) Exprimer la différentielle de I’énergie libre dF' en fonction des pressions p;
et py du gaz dans les sous-systemes 1 et 2. En déduire que dF' < 0.
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bain thermique

Fig. 4.2 Un systéme fermé et rigide contenant un gaz homogene est divisé en deux parties
séparées par une une paroi mobile, imperméable et diatherme. Le systéeme est en contact avec
un bain thermique a température T' constante.

Solution

1)

A température T constante, compte tenu de la définition (4.22), la diffé-
rentielle de ’énergie libre dF’' s’écrit,

dF =dU — TdS

La puissance mécanique exercée par le bain thermique sur le systeme rigide
est nul, i.e. Py = 0. Par conséquent, dans ce cas, le premier principe (1.38)
se réduit a,

dU = 6Q

A T'aide de la chaleur infinitésimale (1.35), du deuxieme principe (2.18) et
de dS = S dt, la différentielle de ’énergie libre peut étre mise sous la forme,

dF = 6Q — TdS = (PQ— TS) dt = —TTgdt <0

L’énergie libre du systéeme F' (11, Ts, V1, Va) est la somme des énergies libres
Fy (T1,V1) et F5 (T, V3) des deux sous-systemes,

F(TlaT27‘/17‘/2) = Fl (T17‘/1) +F2 (TQa‘/Q)

A T’équilibre thermique les températures des deux sous-systemes T; et Tp
sont égales a celle du bain thermique T,

=T, =T
La différentielle de 1’énergie libre dF' a température T s’écrit,

0F, 0F,
F = —_— ‘/ _— ‘/
d ovi avi+ oV, ave
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Etant donné que le systeme est rigide, la différentielle du volume total dV'
s’annule,

dV =dVi +dV, =0 ainsi dVy = —dV;

De plus, en appliquant la définition (4.27) aux deux sous-systeémes, on ob-

tient,
. on ot _ O0FR
b1 = v, P2 = Vs
Par conséquent, la différentielle de 1'énergie libre dF' & température T' se
réduit a,

dF = — (p1 — p2) dV1

Cette équation donne lieu a trois types de solutions. Premiérement, dans
le cas ou p; > ps, la paroi se déplace vers la droite,

p1 > Po et dViy >0 ainsi dF <0
Deuxiemement, dans le cas ou p; < pa, la paroi se déplace vers la gauche,
p1 < p2 et dVi <0 ainsi dF <0

Troisiemement, dans le cas ou p; = ps, c’est-a-dire a 1’équilibre méca-
nique (3.29), la paroi est immobile,

P1 = P2 et dVi =0 ainsi dF =0

4.14 Puissance chimique

\E3

PWT Pc

Fig. 4.3 Un récipient avec des parois adiabatiques contient un fluide qui entre et sort du
systéme en deux endroits spécifiques. La pression extérieure & I’entrée est pT et la pression
extérieure a la sortie est p~. La puissance mécanique décrivant l'action mécanique sur le
systéeme est Py et la puissance chimique décrivant le transfert de matiere est Pc.

Yoroke®r Un systéme ouvert est constitué d’un fluide formé d’une seule sub-
stance enfermée dans un récipient avec des parois adiabatiques. Le fluide entre



Puissance chimique 15

et sort du récipient en deux endroits spécifiques. Ces deux transferts de matiere
sont décrits par une puissance chimique Pg. La pression extérieure a l'entrée
du fluide est p* et la pression extérieure & la sortie est p~. L’action mécanique
associée au transfert de matiere est décrite par une puissance mécanique Py,
(fig. 4.3). On suppose que le fluide est a I’équilibre thermique & température
T. Pour ce systeme ouvert, montrer que dans un état stationnaire, la puissance
chimique Pg qui décrit par les transferts de matiere peut s’écrire,

PC:H++H_

ott HT > 0 et H~ < 0 sont les taux de variation d’enthalpie dus aux transferts
de matiere entrant et sortant du systeme, respectivement.

Solution

Comme les pistons et les parois du cylindre sont adiabatiques 1’échange de
chaleur se fait par convection a ’entrée et a la sortie. La variation d’entropie
du systeme s’écrit,
S=5t+8"

olt ST et S~ sont les dérivées temporelles de lentropie du fluide échangée
par convection a l'entrée et a la sortie. Comme le systeme est dans un état
stationnaire, i.e. S = 0, la puissance thermique Pg du systéme a température
T s’annule,

Po=T$=T($7+57) =0
Par conséquent, le premier principe (1.28) s’écrit,
U= Py + Po

La puissance mécanique est due & ’action mécanique liée au transfert de matiéere
a lentrée et la sortie du systeme s’écrit,

Py =—ptVt—p V"~

ot pT et p~ sont les pressions extérieures a 'entrée et & la sortie et VT et
V'~ sont les dérivées temporelles du volume de fluide échangé a lentrée et a la
sortie. La variation d’énergie interne du systéme s’écrit,

U=U"+U"
ot Ut et U~ sont les dérivées temporelles de I'énergie interne du fluide dues &
I’échange de matiere par convection a l'entrée et a la sortie. Ainsi, la puissance
chimique s’écrit,
Pc = U-— Py = (U+ +p+V+) + (U_ —l—p_V_)
Les dérivées temporelle de 'enthalpie a I’entrée et a la sortie s’écrivent respec-
tivement,
Ht=Ut4+pTVt>0 et H =U +p V_ <0
Par conséquent, la puissance chimique devient,

PC:H++H_



