
Chapitre 4

Potentiels thermodynamiques

4.1 Compression adiabatique

Un gaz est caractérisé par son enthalpie H (S, p) = Cp T , où Cp

est une constante appelée chaleur spécifique, et par p V = NRT , où p est sa
pression, V son volume, T sa température et N le nombre de moles de gaz. Une
compression adiabatique réversible accrôıt la pression de p1 à p2 où p2 > p1.
La température initiale est T1. Déterminer la température T2 à la fin de la
compression.

4.1 Solution

Pour un processus adiabatique réversible l’entropie S est constante, i.e. dS = 0.
Ainsi, la différentielle de l’enthalpie s’écrit,

dH = Cp dT = T dS + V dp = V dp

Compte tenu de la relation p V = NRT , on en déduit que,

dT

T
=

1

Cp

V

T
dp =

NR

Cp

dp

p

L’intégration de cette relation de l’état initial (T1, p1) à l’état final (T2, p2)
s’écrit,

ln

(
T2
T1

)
=
NR

Cp
ln

(
p2
p1

)
L’exponentiation de cette équation donne la température à la fin de la com-
pression,

T2 = T1

(
p2
p1

)NR
Cp

4.2 Transfert irréversible de chaleur

Un cylindre fermé par un piston contient N moles de gaz diatomique
caractérisé par U = (5/2)NRT et par p V = NRT , comme en exercice 4.1. Le
gaz a une température initiale Ti lorsqu’il est mis en contact avec un réservoir
de travail à pression p ext = p et à température T ext = Tf , ce qui provoque un
transfert irréversible de chaleur. Déterminer la quantité de chaleur échangée.



2 Potentiels thermodynamiques

Application numérique

N = 0.5 mol, Ti = 300 K and Tf = 450 K.

4.2 Solution

L’enthalpie du gaz s’écrit,

H = U + p V =
5

2
NRT +NRT =

7

2
NRT

D’après la relation (4.61), la chaleur échangée est,

Qif = ∆Hif =
7

2
NR (Tf − Ti) = 2.18 kJ.

4.3 Energie interne comme fonction de T et de V

Etablir l’expression de la différentielle de l’énergie interne

dU
(
S (T, V ) , V

)
comme fonction de la température T et du volume V . Dans

le cas particulier où le gaz satisfait la relation p V = NRT , montrer que

dU
(
S (T, V ) , V

)
est proportionnel à dT .

4.3 Solution

D’après la définition mathématique (4.80), la différentielle dU
(
S (T, V ) , V

)
est

exprimée comme,

dU
(
S (T, V ) , V

)
=

∂U
(
S (T, V ) , V

)
∂S (T, V )

∂S (T, V )

∂T

 dT

+

∂U
(
S (T, V ) , V

)
∂S (S, V )

∂S (T, V )

∂V
+
∂U
(
S (T, V ) , V

)
∂V

 dV

A l’aide des définitions (2.9), (2.10), (4.81) et de la relation de Maxwell (4.75),
on obtient,

dU
(
S (T, V ) , V

)
=
∂U

∂T

∣∣∣∣
V

dT +

(
T
∂p (T, V )

∂T
− p (T, V )

)
dV

Dans le cas particulier d’un gaz qui satisfait la relation p V = NRT , les termes
entre parenthèses s’annulent et la différentielle se réduit à,

dU
(
S (T, V ) , V

)
=
∂U

∂T

∣∣∣∣
V

dT

qui est en effet proportionnel à dT .
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4.4 Enthalpie comme fonction de T et de p

Etablir l’expression de la différentielle de l’enthalpie dH
(
S (T, p) , p

)
comme fonction de la température T et de la pression p. Dans le cas particulier

où le gaz satisfait la relation p V = NRT , montrer que dH
(
S (T, p) , p

)
est

proportionnel à dT .

4.4 Solution

D’après la définition mathématique (4.80), la différentielle dH
(
S (T, p) , p

)
est

exprimée comme,

dH
(
S (T, p) , p

)
=

∂H
(
S (T, p) , p

)
∂S (T, p)

∂S (T, p)

∂T

 dT

+

∂H
(
S (T, p) , p

)
∂S (S, p)

∂S (T, p)

∂p
+
∂H
(
S (T, p) , p

)
∂p

 dp

A l’aide des définitions (4.33), (4.34), (4.81) et de la relation de Maxwell (4.79),
on obtient,

dH
(
S (T, p) , p

)
=
∂H

∂T

∣∣∣∣
p

dT +

(
−T ∂V (T, p)

∂T
+ V (T, p)

)
dp

Dans le cas particulier d’un gaz qui satisfait la relation p V = NRT , les termes
entre parenthèses s’annulent et la différentielle se réduit à,

dH
(
S (T, p) , p

)
=
∂H

∂T

∣∣∣∣
p

dT

qui est en effet proportionnel à dT .

4.5 Grand potentiel

Le grand potentiel Φ (T, V, {µA}), aussi appelé énergie libre
de Landau , est un potentiel thermodynamique obtenu par transformations
de Legendre de l’énergie interne U (S, V, {NA}). Utiliser les transformations
de Legendre pour exprimer le potentiel thermodynamique Φ (T, V, {µA}) en
termes du potentiel thermodynamique F . Déterminer aussi la différentielle
dΦ (T, V, {µA}).
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4.5 Solution

Afin d’obtenir le grand potentiel Φ (T, V, {µA}), on effectue des transformations
de Legendre sur l’énergie interne U (S, V, {NA}) par rapport à l’entropie S et au
nombre de moles NA de chaque substance A. Compte tenu des définitions (2.9)
et (2.11),

Φ = U − ∂U

∂S
S −

∑
A

∂U

∂NA
NA = U − T S −

∑
A

µANA

Compte tenu des expression (4.22) et(4.23) de l’énergie libre,

Φ = F −
∑
A

µANA = − p V

En prenant la différentielle du grand potentiel Φ (T, V, {µA}), on obtient,

dΦ = dU − T dS − S dT −
∑
A

µA dNA −
∑
A

NA dµA

Compte tenu de la différentielle de la relation de Gibbs (4.1), la différentielle
du grand potentiel Φ (T, V, {µA}) s’écrit,

dΦ = −S dT − p dV −
∑
A

NA dµA

4.6 Rayonnement du corps noir

Un corps noir désigne un objet en l’équilibre thermique avec l’environ-
nement qui émet un rayonnement dont la densité volumique d’énergie interne
ne dépend que de la température. L’énergie interne de ce rayonnement est de
la forme,

U (S, V ) =
3

4

(
3c

16σ

)1/3

S4/3V −1/3

où σ est la constante de Stefan-Boltzmann.

1) Déterminer l’énergie libre F (T, V ) du rayonnement.

2) Montrer que l’énergie interne U (S, V ) du rayonnement peut être obtenue en
opérant une transformation de Legendre inverse de l’énergie libre F (T, V ).

3) Trouver les expressions p (T, V ) et p (S, V ) de la pression du rayonnement.

4.6 Solution

1) La température (2.9) du rayonnement du corps noir est définie comme,

T (S, V ) =
∂U (S, V )

∂S
=

(
3c

16σ

)1/3

S1/3V −1/3
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En inversant cette relation, on obtient l’entropie du rayonnement S (T, V )
en fonction de la température T et du volume V ,

S (T, V ) =

(
16σ

3c

)
T 3V

En substituant cette équation dans l’expression de l’énergie interne du
rayonnement U (S, V ) on trouve,

U =
4σ

c
T 4V

L’énergie libre F (T, V ) est obtenue par transformation de Legendre (4.22)
de l’énergie interne U (S, V ) par rapport à l’entropie S. A l’aide des deux
équations précédentes cette transformation s’écrit explicitement,

F (T, V ) = U − TS = − 4σ

3c
T 4V

2) L’entropie (4.26) du rayonnement du corps noir est définie comme,

S (T, V ) = − ∂F (T, V )

∂T
=

16σ

3c
T 3V

En inversant cette relation, on obtient la température du rayonnement
T (S, V ) en fonction de l’entropie S et du volume V ,

T (S, V ) =

(
3c

16σ

)1/3

S1/3V −1/3

En substituant cette équation dans l’expression de l’énergie libre du rayon-
nement F (T, V ) on trouve,

F = − 1

4

(
3c

16σ

)1/3

S4/3V −1/3

L’énergie interne U (S, V ) est obtenue par transformation de Le-
gendre (4.22) de l’énergie libre F (T, V ) par rapport à la température T . A
l’aide des deux équations précédentes cette transformation s’écrit explici-
tement,

U (S, V ) = F + ST =
3

4

(
3c

16σ

)1/3

S4/3V −1/3

3) A l’aide de la définition (2.10), la pression de radiation du corps noir p (S, V )
s’exprime en fonction de S et V comme,

p (S, V ) = − ∂U (S, V )

∂V
=

1

4

(
3c

16σ

)1/3

S4/3V −4/3

A l’aide de la définition (4.27), la pression de radiation du corps noir p (T, V )
s’exprime en fonction de T et V comme,

p (T, V ) = − ∂F (T, V )

∂V
=

4σ

3c
T 4
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4.7 Fonctions de Massieu

On considère les deux fonctions de Massieu suivantes :

1) J

(
1

T
, V,N

)
2) Y

(
1

T
,
p

T
,N

)
Les fonctions de Massieu sont obtenues par transformations de Legendre de
la fonction d’état entropie S (U, V,N) par rapport au variables d’état U et V .
Utiliser les transformations de Legendre pour exprimer les fonctions de Massieu

J

(
1

T
, V,N

)
et Y

(
1

T
,
p

T
,N

)
en termes des potentiels thermodynamiques F

et G. Déterminer aussi les différentielles dJ

(
1

T
, V,N

)
et dY

(
1

T
,
p

T
,N

)
.

4.7 Solution

L’entropie S (U, V,N) comme fonction d’état s’écrit,

S =
1

T
U +

p

T
V − µ

T
N

et sa différentielle s’écrit,

dS =
1

T
dU +

p

T
dV − µ

T
dN

Ainsi,
∂S

∂U
=

1

T
et

∂S

∂V
=
p

T

Afin d’obtenir la fonction de Massieu J

(
1

T
, V,N

)
, on effectue une transfor-

mation de Legendre de l’entropie S (U, V,N) par rapport à l’énergie interne
U ,

J = S − ∂S

∂U
U = S − U

T
= − F

T

De manière similaire, pour obtenir la fonction de Massieu Y

(
1

T
,
p

T
,N

)
, aussi

appelée la fonction de Planck , on effectue deux transformations de Legendre
de l’entropie S (U, V,N) par rapport à l’énergie interne U et au volume V ,

Y = S − ∂S

∂U
U − ∂S

∂V
V = S − U

T
− p V

T
= − µ

T
N = − G

T

La différentielle de la fonction de Massieu J

(
1

T
, V,N

)
s’écrit,

dJ = dS − 1

T
dU − U d

(
1

T

)
= −U d

(
1

T

)
+
p

T
dV − µ

T
dN
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De manière similaire, la différentielle de la fonction de Massieu Y

(
1

T
,
p

T
,N

)
s’écrit,

dY = dS− 1

T
dU−U d

(
1

T

)
− p

T
dV−V d

( p
T

)
= −U d

(
1

T

)
−V d

( p
T

)
− µ

T
dN

4.8 Equations de Gibbs-Helmoltz

1) Montrer que

U (S, V ) = −T 2 ∂

∂T

(
F (T, V )

T

)
où T ≡ T (S, V ) est considéré comme une fonction de S et V .

2) Montrer que

H (S, p) = −T 2 ∂

∂T

(
G (T, p)

T

)
où T ≡ T (S, p) est considéré comme une fonction de S et p.

4.8 Solution

1) L’énergie interne U est liée à l’énergie libre F et exprimée en termes des
variables d’état S et V comme,

U (S, V ) = F
(
T (S, V ) , V

)
+ T (S, V )S

A l’aide de la définition (4.26) et de la règle de la dérivée d’un produit de
fonctions, elle peut être mise sous la forme,

U (S, V ) = F
(
T (S, V ) , V

)
− T (S, V )

∂F
(
T (S, V ) , V

)
∂T

= −T (S, V )
2 ∂

∂T

F
(
T (S, V ) , V

)
T


2) De manière similaire, l’enthalpie H est liée à l’énergie libre de Gibbs G et

exprimée en termes des variables d’état S et p comme,

H (S, p) = G
(
T (S, p) , p

)
+ T (S, p)S

A l’aide de la définition (4.40) et de la règle de la dérivée d’un produit de
fonctions, elle peut être mise sous la forme,

H (S, p) = G
(
T (S, p) , p

)
− T (S, p)

∂G
(
T (S, p) , p

)
∂T

= −T (S, p)
2 ∂

∂T

G
(
T (S, p) , p

)
T


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4.9 Pression dans une bulle de savon

Une bulle de savon est un système constitué de deux sous-systèmes.
Le sous-système (`) est un film liquide mince et le sous-système (g) est le gaz
enfermé à l’intérieur du film. L’air extérieur peut être considéré comme un
réservoir de chaleur. L’équilibre est caractérisé par le minimum de l’énergie
libre F du système. La différentielle de l’énergie libre dF s’écrit,

dF = − (Sg + S`) dT + 2 γ dA− (p− p0) dV

où A est l’aire du film de savon et V est le volume de la bulle. Le paramètre γ
est appelé la tension superficielle . Il caractérise les interactions à l’interface
entre le liquide et le gaz. Comme le film de savon a une interface intérieure et
une interface extérieure, il y a un facteur 2 devant le paramètre γ. La tension
superficielle γ est une variable intensive qui joue un rôle analogue pour un
système surfacique à la pression pour un système volumique. Toutefois, la force
due à la pression du gaz est exercée vers l’extérieur alors que la force due à la
tension superficielle est exercée vers l’intérieur. Par conséquent, les signes de
deux termes correspondants dans l’expression de dF sont opposés. Le terme
p− p0 est la différence de pression entre la pression p à l’intérieur de la bulle et
la pression atmosphérique p0. Considérer la bulle comme une sphère de rayon
r et montrer que,

p− p0 =
4 γ

r

4.9 Solution

Comme l’air autour de la goutte est un bain thermique, la température est
constant, i.e. dT = 0. Pour une bulle sphérique, la différentielle de l’aire latérale
s’écrit,

dA = 4π (r + dr)
2 − 4π r2 = 4π

(
2 rdr + dr2

)
≈ 8π rdr

où on néglige le terme du deuxième ordre en dr2. La différentielle du volume
est donnée par,

dV =
4π

3
(r + dr)

3 − 4π

3
r3 =

4π

3

(
3 r2dr + 3 rdr2 + dr3

)
≈ 4π r2dr

où on néglige le terme du deuxième ordre en dr2 et le terme du troisième ordre
en dr3. A l’équilibre, l’énergie libre F est minimale. Ainsi,

dF = 16π γ rdr − 4π (p− p0) r2dr = 0

ce qui implique que la différence de pression est donnée par,

p− p0 =
4 γ

r
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h

p0

p = p0 + rgh

p0

Fig. 4.1 Principe de fonctionnement d’un dispositif qui pourrait être utilisé pour estimer
l’influence de la tension superficielle sur la pression à l’intérieur d’une goutte d’eau. Le réci-
pient est suffisamment grand pour que lorsque la goutte se forme la variation de hauteur du
liquide soit négligeable. Le système est en contact thermique l’atmosphère qui est considérée
comme un réservoir de chaleur à température constante T .

4.10 Pression dans une goutte

Déterminer la pression hydrostatique p à l’intérieur d’une goutte
comme fonction de son rayon r (fig. 4.1). On suppose que la goutte (g) se
forme à l’extrémité inférieure d’un tube fin fixé au bas d’un cylindre vertical
contenant le liquide (`). Lorsque la goutte se forme à l’extrémité du tube, la
variation de la hauteur de l’eau dans le récipient cylindrique est négligeable. Si
la hauteur du liquide au-dessus de l’extrémité inférieure du tube est h, alors
la pression hydrostatique est p = p0 + ρgh, où ρ est la masse volumique du
liquide, et g est l’intensité du champ gravitationnel à la surface de la terre.
Pour ce liquide, la différentielle de l’énergie libre s’écrit,

dF = − (S` + Sg) dT + γ dA− (p− p0) dV

Montrer que,

p− p0 =
2 γ

r
= ρgh

4.10 Solution

La différence de pression p − p0 est obtenue en effectuant le même calcul que
pour la bulle de savon (sect. 4.9), en utilisant la tension superficielle γ au lieu
de 2γ.

4.11 Chaleur de détente surfacique isotherme

Un système est constitué d’un mince film d’aire A, d’énergie interne
U (S,A), où

dU = T dS + γ dA
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Ainsi, la tension superficielle s’écrit,

γ (S,A) =
∂U (S,A)

∂A

Exprimer la chaleur Qif fournie au film pour une variation ∆Aif = Af − Ai de
sa surface à l’aide d’un processus isotherme à température T , d’un état initial i
à un état final f , en termes de sa tension superficielle γ (T,A) et de ses dérivées
partielles.

4.11 Solution

On effectue une transformation de Legendre de l’énergie interne U (S,A) par
rapport à l’entropie S pour définir l’énergie libre et déterminer sa différentielle,

dF (T,A) = −S (T,A) dT + γ (T,A) dA

où

γ (T,A) =
∂F (T,A)

∂A
et S (T,A) = − ∂F (T,A)

∂T

Pour un processus isotherme, on peut déterminer la chaleur Qif fournie au film
comme,

Qif = T ∆Sif = T
∂S (T,A)

∂A
∆Aif

Le théorème de Schwarz appliqué à l’énergie libre F (T,A) s’écrit,

∂

∂A

(
∂F

∂T

)
=

∂

∂T

(
∂F

∂A

)
ce qui donne la relation de Maxwell,

∂S (T,A)

∂A
= − ∂γ (T,A)

∂T

Ainsi, la chaleur fournie au film s’écrit,

Qif = −T ∂γ (T,A)

∂T
∆Aif

4.12 Propriétés thermomécaniques d’une barre élastique

L’état d’une barre élastique est décrit par les variables d’état entropie
S et longueur L. La différentielle de l’énergie interne U (S,L) de la barre s’écrit,

dU =
∂U (S,L)

∂S
dS +

∂U (S,L)

∂L
dL = T (S,L) dS + f (S,L) dL

On note que f (S,L) a la dimension d’une force. La contrainte longitudinale

τ exercée sur la barre est τ =
f

A
, où A est l’aire de la section de la barre.
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On néglige toute variation de A due à f . Les propriétés physiques du matériau
de la barre sont données par le coefficient de dilatation thermique linéaire à
contrainte fixée,

αL =
1

L

∂L (T, f)

∂T
,

et le module de Young isotherme,

E =
L

A

∂f (T, L)

∂L
.

Utiliser ces deux propriétés physiques du matériau, considérées comme des
constantes, pour répondre aux questions suivantes :

1) Déterminer la dérivée partielle de la contrainte exercée sur la barre τ par
rapport à la température lorsque sa longueur est fixée. Considérer que la
section d’aire A est indépendante de la température.

2) Exprimer le transfert de chaleur durant la variation isotherme de la lon-
gueur de la barre ∆Lif d’un état initial i à un état final f en termes de αL

et E.

3) Déterminer la dérivée partielle de la température T de la barre par rapport
à sa longueur L dans un processus adiabatique réversible.

4.12 Solution

1) En appliquant l’identité cyclique de dérivées partielles (4.85) à la force
f (T, L), on obtient,

∂f

∂T

∂T

∂L

∂L

∂f
= − 1

et ainsi,
∂f

∂T
= − ∂L

∂T

∂f

∂L
= −αLAE

Comme la section A est indépendante de la température, la contrainte
longitudinale dans la barre varie avec la température comme,

∂τ

∂T
= −αLE

2) A température constante T , le transfert infinitésimal de chaleur s’écrit,

δQ = T dS (T, L) = T
∂S

∂L
dL

La différentielle de l’énergie libre s’écrit,

dF = −S (T, L) dT + f (T, L) dL

Le théorème de Schwarz appliqué à l’énergie libre F (T, L) s’écrit,

∂

∂L

(
∂F

∂T

)
=

∂

∂T

(
∂F

∂L

)
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ce qui donne la relation de Maxwell,

− ∂S (T, L)

∂L
=
∂f (T, L)

∂T
= −αLAE = cste

Ainsi, après intégration du transfert de chaleur infinitésimal δQ à tem-
préature T constante, on obtient le transfert de chaleur pour un processus
isotherme d’un état initial i à un état final f ,

Qif = T
∂S

∂L
∆Lif

A l’aide de la relation de Maxwell et de l’identité cyclique de dérivées
partielles (4.85), le transfert de chaleur peut être mis sous la forme,

Qif = −T ∂f

∂T
∆Lif = T

∂L

∂T

∂f

∂L
∆Lif = αL T AE∆Lif

3) Pour un processus adiabatique réversible, on doit déterminer la dérivée de la
longueur L (S, T ) par rapport à la température lorsque l’entropie est main-
tenue constante. A l’aide de l’identité cyclique de dérivées partielles (4.85),
on obtient,

∂T

∂L
= − ∂T

∂S

∂S

∂L

Lorsqu’on identifie les deux expressions du transfert de chaleur Qif obte-
nues au point 2), on trouve,

∂S

∂L
= αLAE

Ainsi,
∂T

∂L
= − αLAE

CL
T où CL = T

∂S (T, L)

∂T

est la chaleur spécifique à longueur constante.

4.13 Sous-systèmes simples dans un bain thermique

On considère un système fermé et rigide contenant un gaz homogène.
Le système est divisé en deux sous-systèmes simples séparés par une paroi
mobile, imperméable et diatherme. Le système est à l’équilibre thermique avec
un bain thermique à température T = cste (fig. 4.2). L’énergie cinétique et
l’énergie interne de la paroi sont négligeables.

1) Exprimer la différentielle de l’énergie libre dF en fonction du taux de pro-
duction d’entropie ΠS .

2) Exprimer la différentielle de l’énergie libre dF en fonction des pressions p1
et p2 du gaz dans les sous-systèmes 1 et 2. En déduire que dF 6 0.
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Fig. 4.2 Un système fermé et rigide contenant un gaz homogène est divisé en deux parties
séparées par une une paroi mobile, imperméable et diatherme. Le système est en contact avec
un bain thermique à température T constante.

4.13 Solution

1) A température T constante, compte tenu de la définition (4.22), la diffé-
rentielle de l’énergie libre dF s’écrit,

dF = dU − T dS

La puissance mécanique exercée par le bain thermique sur le système rigide
est nul, i.e. PW = 0. Par conséquent, dans ce cas, le premier principe (1.38)
se réduit à,

dU = δQ

A l’aide de la chaleur infinitésimale (1.35), du deuxième principe (2.18) et
de dS = Ṡ dt, la différentielle de l’énergie libre peut être mise sous la forme,

dF = δQ− T dS =
(
PQ − T Ṡ

)
dt = −T ΠS dt 6 0

2) L’énergie libre du système F (T1, T2, V1, V2) est la somme des énergies libres
F1 (T1, V1) et F2 (T2, V2) des deux sous-systèmes,

F (T1, T2, V1, V2) = F1 (T1, V1) + F2 (T2, V2)

A l’équilibre thermique les températures des deux sous-systèmes T1 et T2
sont égales à celle du bain thermique T ,

T1 = T2 = T

La différentielle de l’énergie libre dF à température T s’écrit,

dF =
∂F1

∂V1
dV1 +

∂F2

∂V2
dV2
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Etant donné que le système est rigide, la différentielle du volume total dV
s’annule,

dV = dV1 + dV2 = 0 ainsi dV2 = − dV1
De plus, en appliquant la définition (4.27) aux deux sous-systèmes, on ob-
tient,

p1 = − ∂F1

∂V1
et p2 = − ∂F2

∂V2

Par conséquent, la différentielle de l’énergie libre dF à température T se
réduit à,

dF = − (p1 − p2) dV1

Cette équation donne lieu à trois types de solutions. Premièrement, dans
le cas où p1 > p2, la paroi se déplace vers la droite,

p1 > p2 et dV1 > 0 ainsi dF < 0

Deuxièmement, dans le cas où p1 < p2, la paroi se déplace vers la gauche,

p1 < p2 et dV1 < 0 ainsi dF < 0

Troisièmement, dans le cas où p1 = p2, c’est-à-dire à l’équilibre méca-
nique (3.29), la paroi est immobile,

p1 = p2 et dV1 = 0 ainsi dF = 0

4.14 Puissance chimique

Fig. 4.3 Un récipient avec des parois adiabatiques contient un fluide qui entre et sort du
système en deux endroits spécifiques. La pression extérieure à l’entrée est p+ et la pression
extérieure à la sortie est p−. La puissance mécanique décrivant l’action mécanique sur le
système est PW et la puissance chimique décrivant le transfert de matière est PC .

Un système ouvert est constitué d’un fluide formé d’une seule sub-
stance enfermée dans un récipient avec des parois adiabatiques. Le fluide entre
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et sort du récipient en deux endroits spécifiques. Ces deux transferts de matière
sont décrits par une puissance chimique PC . La pression extérieure à l’entrée
du fluide est p+ et la pression extérieure à la sortie est p−. L’action mécanique
associée au transfert de matière est décrite par une puissance mécanique PW

(fig. 4.3). On suppose que le fluide est à l’équilibre thermique à température
T . Pour ce système ouvert, montrer que dans un état stationnaire, la puissance
chimique PC qui décrit par les transferts de matière peut s’écrire,

PC = Ḣ+ + Ḣ−

où Ḣ+ > 0 et Ḣ− < 0 sont les taux de variation d’enthalpie dus aux transferts
de matière entrant et sortant du système, respectivement.

4.14 Solution

Comme les pistons et les parois du cylindre sont adiabatiques l’échange de
chaleur se fait par convection à l’entrée et à la sortie. La variation d’entropie
du système s’écrit,

Ṡ = Ṡ+ + Ṡ−

où Ṡ+ et Ṡ− sont les dérivées temporelles de l’entropie du fluide échangée
par convection à l’entrée et à la sortie. Comme le système est dans un état
stationnaire, i.e. Ṡ = 0, la puissance thermique PQ du système à température
T s’annule,

PQ = T Ṡ = T
(
Ṡ+ + Ṡ−

)
= 0

Par conséquent, le premier principe (1.28) s’écrit,

U̇ = PW + PC

La puissance mécanique est due à l’action mécanique liée au transfert de matière
à l’entrée et la sortie du système s’écrit,

PW = − p+ V̇ + − p− V̇ −

où p+ et p− sont les pressions extérieures à l’entrée et à la sortie et V̇ + et
V̇ − sont les dérivées temporelles du volume de fluide échangé à l’entrée et à la
sortie. La variation d’énergie interne du système s’écrit,

U̇ = U̇+ + U̇−

où U̇+ et U̇− sont les dérivées temporelles de l’énergie interne du fluide dues à
l’échange de matière par convection à l’entrée et à la sortie. Ainsi, la puissance
chimique s’écrit,

PC = U̇ − PW =
(
U̇+ + p+ V̇ +

)
+
(
U̇− + p− V̇ −

)
Les dérivées temporelle de l’enthalpie à l’entrée et à la sortie s’écrivent respec-
tivement,

Ḣ+ = U̇+ + p+ V̇ + > 0 et Ḣ− = U̇− + p− V̇ − < 0

Par conséquent, la puissance chimique devient,

PC = Ḣ+ + Ḣ−


